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The update of implicational bases for one-set
extensions of a closure system

Kira Adaricheva1 and Taylor Ninesling2
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tension Problem, canonical direct basis, D-basis, ordered direct basis

The dynamic update of knowledge bases is a routine procedure in the realm
of Artificial Intelligence. This application requires tractable representation, such
as Horn logic or various versions of descriptive logic. The interest in Horn logic
is easily explained by the fact that the reasoning in Horn logic is effective, while
the reasoning in general propositional logic is intractable.

If some knowledge base is represented by a (definite) Horn formula Σ in
variables X = {x1, . . . , xn}, then the set of its models FΣ forms a lower sub-
semilattice in 2X , which is often referred to as a closure system on X, or a Moore
family on X [7]. Alternately, one can associate with Σ a closure operator ϕ on
X, so that models from FΣ are exactly the closed sets of ϕ. Also, Σ can be
interpreted as a set of implications defining the closure operator ϕ. The gen-
eral connections between Horn formulas (in propositional and first order logic),
closure operators and their models were surveyed recently in [1].

The knowledge base requires an update if some of the models expire or the
new models need to be incorporated into the existing base. In the current work
we tackle the problem of re-writing the Horn formula Σ, when a new model A
has to be added to the family FΣ . We will refer to it as the Singleton Horn
Extension (SHE) Problem. If the knowledge base is given by a binary table, the
associated closure operator is defined either on the set of columns or set of rows.
Then SHE problem arises when adding new row or column to the table. The
problem was earlier addressed in the general framework of closure systems in [8]
and the framework of Horn-to-Horn belief revision in [4].

In our work we considered two special cases of the SHE problem: when for-
mula Σ is given by the canonical direct basis of implications defining closure
operator ϕ, and when it is given by its refined form of the D-basis. We will
assume that one needs an algorithmic solution that provides at the output an
updated formula Σ∗(A) that is canonical direct, or, respectively, the D-basis of
the extended closure system.

The canonical direct basis is well known in the literature and was introduced
in multiple instances under various names. It was surveyed in [6] and shown to
be a shortest direct basis of associated closure operator ϕ. A basis Σ is direct

1



2

when the closure ϕ(Y ) of any set Y ⊆ X is computed as follows:

ϕ(Y ) = Y ∪ {d : (C → d) ∈ Σ,C ⊆ Y }.

The body-building formula Σ(A) in [4] provides an update of the Horn for-
mula Σ describing a closure system extended by a new closed set A, when the
formula Σ represents the canonical direct basis of associated closure operator.

We observe that formula Σ(A) is again the direct basis of the closure system
extended by A, while it is not necessarily the canonical direct basis. We develop
algorithmic solution for updated body-building formula Σ∗(A) which represents
the canonical direct basis.

The D-basis was introduced in [3] as a refined version of the canonical direct
basis. In particular, it is a subset of the canonical direct basis and it is known
to be ordered direct. Several algorithmic solutions were presented recently for
extraction of the D-basis, when the closure system is given by some (definite)
Horn formula Σ [9] or by a binary table [2].

We introduce the concept of a binary-direct basis of a closure system as an
intermediate between direct and ordered direct bases. It turns out that the D-
basis is the shortest binary-direct basis for a given closure system. This allows
us to extend the approach used in the update of the canonical direct basis for
the new family of bases, including the D-basis.
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Homogeneous universal and Atomic models:

Boolean Algebras

John T. Baldwin
Department of Mathematics, Statistics and Computer Science

University of Illinois at Chicago

May 30, 2017

Abstract

I will discuss the evolution of Jónsson’s construction of homogeneous-

universal models, and in particular recent applications to infinitary logic, atomic

model theory and abstract elementary classes.

I will survey three results. 1) The construction (with Koerwien and Laskowski)

of an explicit complete Lω1,ω-sentence φn characterizing ℵn for each n. This ar-

gument requires a new notion of n-dimensional amalgamation which allows the

construction of atomic models in various uncountable cardinals. 2) These consid-

erations led to constructions (with Souldatos) of complete Lω1,ω-sentences which

have maximal models in more than one cardinal, but all below ℵω1 . Note that an

abstract elementary class with amalgamation and joint embedding can have at most

one maximal model. 3) Shelah and I have constructed (modulo presumably elim-

inable set theoretic hypotheses) a complete Lω1,ω-sentence with maximal models

cofinally in the first measurable cardinal and forever if there is no measurable car-

dinal. Here Boolean algebra enters the picture as the crux is the construction of

large atomic Boolean algebras, whose quotient modulo the finite joins of atoms, is

atomless. The subtlety arises from considering when these quotients are actually

free.

1
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Equationally trivial algebras

Libor Barto, Charles University

Abstract

An algebra is called equationally trivial if any system of (universally quantified) equa-
tions, which is satisfied by terms of the algebra, is satisfiable in every algebra. The devel-
opment in last 10+ years fuelled by constraint satisfaction problems has brought several
strong and surprising results about this general concept and variations thereof. I will talk
about these results and discuss the open problems.
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JÓNSSON’S CONTRIBUTIONS TO THE STUDY OF
LATTICES OF LOGICS

GURAM BEZHANISHVILI
DEPARTMENT OF MATHEMATICAL SCIENCES

NEW MEXICO STATE UNIVERSITY

Among many contributions of Bjarni Jónsson to mathematics, two
played an important role in the study of lattices of logics. One was
his joint work with Alfred Tarski on canonical extensions of BAOs
(Boolean algebras with operators). It yielded a relational representa-
tion of BAOs, which is instrumental in the study of completeness and
canonicity in modal logic.

The other is his celebrated result on subdirectly irreducible algebras
in congruence-distributive varieties. This opened the door for describ-
ing the upper parts of the lattices of modal and intermediate logics,
which have a rather complicated structure.

The aim of this talk is to review these results, together with our cur-
rent knowledge of the area, and list some of the remaining outstanding
problems in the area, with the emphasis on the lattice of intermediate
logics.

1
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Representation of Convex Geometries by Circles on a Plane

Kira Adaricheva and Madina Bolat

Nazarbayev University

Abstract

Convex geometries are closure systems satisfying the anti-exchange axiom. Every con-
vex geometry is represented by convex sets relative to some finite point configuration in
n-dimensional space, for suitable n, by the result of K. Kashiwabara, M. Nakamura and
Y. Okamoto (2005). In this work we show that not all finite convex geometries can be
represented by finite configuration of circles on the plane. The question of the optimum
space dimension for representation will be further discussed.
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OPERATORS ON PAVELKA’S ALGEBRAS INDUCED BY FUZZY
RELATIONS

MICHAL BOTUR

MV-algebras are algebraic models of �Lukasiewicz multivalued propositional logic. Re-
call that MV-algebras are usually defined as algebras of type A = (A;⊕,¬, 0) such that

(MV1) (A;⊕, 0) is a commutative monoid,
(MV2) the double negation ¬¬x = x holds,
(MV3) the �Lukasiewicz axiom ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x holds.

We recall that any MV-algebra A = (A;⊕,¬, 0) can be organized to bounded com-
mutative residuated lattice satisfying divisibility, prelinearity and double negation law
(A;∨,∧, ·,→, 0, 1), where

x ∨ y := ¬(¬x⊕ y)⊕ y,

x ∧ y := ¬(¬x ∨ ¬y),
x · y := ¬(¬x⊕ ¬y),
x → y = ¬x⊕ y,

1 := ¬0
.
The Pavelka’s logic enriches the �Lukasiewicz’s multi-valued logic with an infinite sys-

tems of constants belonging into a set [0, 1]∩Q. These constants form a dense subalgebra
of the standard MV-algebra defined as ([0, 1];⊕,¬, 0) where

x⊕ y = min{x+ y, 1},
¬x = 1− x

for all x, y ∈ [0, 1].

Definition 1. By a Pavelka’s algebra we mean an algebra A = (A;⊕,¬, {r | r ∈ [0, 1] ∩
Q}) satisfying
(P1) the reduct (A;⊕,¬,0) is an MV-algebra,
(P2) if r, s, t ∈ [0, 1]∩Q are such that r⊕ s = t (computed in [0, 1]∩Q) then r⊕ s = t

(computed in A),
(P3) if r, s ∈ [0, 1] ∩ Q are such that ¬r = s (computed in [0, 1] ∩ Q) then ¬r = s

(computed in A).

In the talk we will study special classes of Galois connections defined by:

Definition 2. Let A = (A;⊕,¬, {r | r ∈ [0, 1]∩Q}) and B = (B;⊕,¬, {r | r ∈ [0, 1]∩Q})
be Pavelka’s algebras. Let f : A −→ B and g : B −→ A be mappings forming a Galois
connection between A and B.We say that f is a strong left adjoint of g, and we denote it
by f � g, if one of the following equivalent conditions holds

(f) r → f(x) = f(r → x) for all x, r ∈ A,
(g) r · g(x) = g(r · x) for all x, r ∈ A.

Author acknowledge the support by support by GAČR 15-15286S and by ESF Project
CZ.1.07/2.3.00/20.0051 Algebraic methods in Quantum Logic of the Masaryk University.
email: michal.botur@upol.cz, tel: +420 602 514 041.
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OPERATORS ON PAVELKA’S ALGEBRAS INDUCED BY FUZZY RELATIONS 2

The main result of the talk is the following representation theorem.

Theorem 1. i) If R : I × J −→ [0, 1] is a fuzzy relation then mappings fR : [0, 1]
I −→

[0, 1]J and gR : [0, 1]
J −→ [0, 1]I defined by

fR(x)(j) =
∧
i∈I

(R(i, j) → x(i)) for all x ∈ A, j ∈ J, (fR)

gR(x)(i) =
∨
j∈J

(R(i, j) · x(j)) for all x ∈ B, i ∈ I, (gR)

satisfy fR � gR.
ii) Let us have complete Pavelka’s algebras A = (A;⊕,¬, {r | r ∈ [0, 1] ∩ Q}) and

B = (B;⊕,¬, {r | r ∈ [0, 1] ∩ Q}) and mappings f : A −→ B and g : B −→ A satisfying
f � g. Then there exists a fuzzy relation

R : SpecM A× SpecM B −→ [0, 1]

such that the diagram

[0, 1]SpecM A [0, 1]SpecM B��
gR

A

[0, 1]SpecM A

� �

nA

��

A B
f �� B

[0, 1]SpecM B

� �

nB

��

A B��
g

[0, 1]SpecM A [0, 1]SpecM B
fR ��

A

gf

��
B

fg

��

[0, 1]SpecM A

gRfR

��
[0, 1]SpecM B

fRgR

��

commutes.

Finally, this theorem will be applied for a representation of Tense operators on Palvelka’s
algebras and monadic Pavelka’s algebras.

Definition 3. Let A = (A;⊕,¬, {r | r ∈ [0, 1] ∩ Q}) be a Pavelka’s algebra and let
G,H : A −→ A be operators such that for every x, y ∈ A,

(PT1) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),
(PT2) r → G(x) = G(r → x) and r → H(x) = H(r → x),
(PT3) ¬H¬G(x) ≤ x and ¬G¬H(x) ≤ x.

Definition 4. Let A = (A;⊕,¬, {r | r ∈ [0, 1] ∩ Q}) be a Pavelka’s algebra. Then by
monadic Pavelka’s algebra we mean a couple (A, ∃) where ∃ is a closure operator satisfying
∃¬∃(x) = ¬∃(x) and r · ∃(x) = ∃(r · x).

Palacký University Olomouc, Faculty of Sciences, 17.listopadu 1192/12, Olomouc 771
46, Czech Republic

E-mail address: michal.botur@upol.cz
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Dmitry Bredikhin (bredikhin@mail.ru)
On Groupoids of Relations with the Operation of C-intersection

This paper is dedicated to the memory of Bjarny Jónsson
whose work inspired me to study algebras of relations

A set of binary relations closed with respect to some collection of operations
on relations forms an algebra of relations. Any algebra of relations can be
considered as partially ordered by the set-theoretic inclusion.

For any set Ω of operations on binary relations, denote by R{Ω} (R{Ω,⊆})
the class of all algebras (partially ordered algebras) isomorphic to the ones
whose elements are binary relations and whose operations are members of Ω.
Let V ar{Ω} (V ar{Ω,⊆}) be the variety and let Qvar{Ω} (Qvar{Ω,⊆}) be the
quasivariety generated by R{Ω} (R{Ω,⊆}).

The following problems naturally arise when classes of algebras of relations
are considered:

1) Find systems axioms for the class R{Ω} (R{Ω,⊆}).
2) Find a basis of quasiidentities for the quasivarietyQvar{Ω} (Qvar{Ω,⊆}).
3) Find a basis of identities for the variety V ar{Ω} (V ar{Ω,⊆}).
4) Does the class R{Ω} (R{Ω,⊆}) form a quasivariety?
5) Does the quasivariety Qvar{Ω} (Qvar{Ω,⊆}) form a variety?
Alfred Tarski initiated the study algebras of relations from the point of view

of universal algebra [1]. He considered algebras of relations with the following
operations: Boolean operations ∪,∩,− ; operations of relational product ◦ and
relational inverse −1; constant operations ∅ (empty set), Δ (diagonal relation),
U (universal relation). He showed that this class of algebras of relations is not
a quasivariety, but the quasivariety generated by it forms a variety.

Bjarny Jónsson considered the class R{◦,−1,∩,Δ}, proved that it forms a
quasivariety, and posed the following question (see [2]): does this class form a
variety? That paper by Bjarny Jónsson was the first research work that I read
in my student years, and it determined my entire scientific career and was the
source of my continued interest in the study of algebras of relations. I am very
pleased that I was able to solve Jónsson’s problem [3].

One of the most important classes of operations on relations is the class of
primitive-positive operations [4] (in other terminology – Diophantine operations
[5, 6]). An operation on relations is called primitive positive, if it can be defined
by a formula containing in its prenex normal form only existential quantifiers
and conjunctions. Note that all operations of Jónsson’s algebras of relations are
primitive-positive.

We will consider problems 1–5 for groupoids of relations, i.e., algebras of
relation with one binary operation. The motivation for these investigations as
well as some results can be found in [7, 8, 9]. Let as focus our attention on the
following binary primitive-positive operation:

ρ ∗ σ = {(u, v) ∈ U × U : (∃w)(u,w) ∈ ρ ∧ (u,w) ∈ σ},
where ρ and σ are relations on U .

1
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Note that ρ ∗ σ = C(ρ∩ σ), where C(ρ) = {(u, v) ∈ U ×U : (∃w)(u,w) ∈ ρ}
is the operation of cylindrification of relations [10]. For this reason, we call ρ∗σ
the C-intersection of ρ and σ.

The main results are formulated in the following theorems. Their proofs are
based on the description of equational and quasiequational theories of algebras
of relations with primitive positive operations [5].

Theorem 1. The class R{∗} forms a variety. A groupoid (A, ·) belongs to
the class R{∗} if and only if it satisfies the identities:

(1) xy = yx, (2) (xy)2 = xy, (3) (xy)y = xy,
(4) x2y2 = x2y, (5) (x2y2)z = x2(y2z).

Theorem 2. The class R{∗,⊆} forms a variety in the class of all partially
ordered groupoids. A partially ordered groupoid (A, ·,≤) belongs to the class
R{∗,⊆} if and only if it satisfies the identities (1)-(5) and the identities:

(6) x ≤ x2, (7) xy ≤ x2.
Corollary. An algebra (A, ·,∨) of the type (2, 2) belongs to the variety

V ar{∗,∪} if and only if (A,∨) is semilattice, and (A, ·,∨) satisfies the identities
(1)-(5) and the identities:

(8) x(y ∨ z) = xy ∨ xz, (9) x ∨ x2 = x2, (10) xy ∨ x2 = x2.
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Abstract

We investigate the equational theory of algebras of formal languages with the constants empty language
and unit language, the unary mirror image and Kleene star operators, and the binary operations of union,
intersection and concatenation. We start by reducing the problem of deciding the validity of an equation over
this signature to the equality of certain graph languages. This allows us to derive decidability, and to show
that this problem is in fact ExpSpace-complete. Using this graph characterisation, and removing the Kleene
star from our signature, we then propose a complete finite axiomatisation of this theory. This development
was obtained using the proof assistant Coq.

We are interested in algebras of lan-
guages, equipped with the constants
empty language (0), unit language (1,

the language containing only the empty word),
the binary operations of union (+), intersec-
tion (∩), and concatenation (·), and the unary
operations of Kleene star (_�) and mirror im-
age, also called converse, (_N). We call these
algebras reversible Kleene lattices. Given a fi-
nite set of variables X, and two terms e, f built
from variables and the above operations, we
say that the equation e = f (respectively in-
equation e ≤ f ) is valid if the corresponding
equality (resp. containment) holds universally.
A free representation is a set M together with
a map h from terms to elements of M such
that e = f is valid if and only if h maps e and f
to the same element of M.

It is well known that to any term over this
syntax, one can associate a regular language,
and that comparing regular languages is de-
cidable. In fact, the problem of comparing
regular expressions with intersection with re-
spect to regular language equivalence is Ex-
pSpace-complete [6]. The difference with the
work presented here is that we are considering
equations that are stable under substitution.
Formally, that means that we do not interpret

the letter a as the singleton language {a}, but
rather as a universally quantified variable rang-
ing over all languages. What is remarkable
however is that testing the validity of equa-
tions in reversible Kleene lattices turns out to
also be an ExpSpace-complete problem.

Fragments of this algebra have been studied:
Kleene algebra (KA, [5]). If we restrict our-

selves to the operators of regular expressions
(0, 1, +, ·, and _�), then the free representa-
tion is the set of regular languages, with the
usual definition of the language of an expres-
sion. Testing the validity of equations in KA is
thus a PSpace-complete problem [7].

Kleene algebra with converse (KAC, [2]). If
we add to KA the converse operation, then the
free representation consists of regular expres-
sions over a duplicated alphabet, with a letter
a′ denoting the converse of the letter a. The
associated decision problem is still PSpace.

Identity-free Kleene lattices (KL−, [1]). This
algebra stems from the operators 0, +, ·, ∩ and
_+, where the latter is the non-zero iteration.
Andréka Mikulás and Németi studied this frag-
ment, and showed that the free representation
of this algebra consists of languages of series-
parallel graphs, downward closed with respect
to some graph preorder. We reformulated their

1
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results with Pous [4], and introduced a new
class of automata, called Petri automata, able
to recognise these languages of graphs. We pro-
vided a decision procedure to compare these
automata, thus yielding an ExpSpace decision
procedure for this theory. We prove ExpSpace-
hardness by adapting a proof from [6].

The present work is then an extension of
identity-free Kleene lattices, by adding unit
and mirror image. The addition of mirror im-
age is fairly simple, relying mainly on ideas
from [2]. However, the seemingly small addi-
tion of 1 yields some complications. In fact,
in [1, 4] there is a free representation of Kleene
allegories, an algebra over the same signa-
ture as reversible Kleene lattices, but whose
intended model is binary relations rather than
languages. In that context, adding 1 means
moving from series-parallel graphs to graphs
of tree-width 2, that might have cycles. This
is a significant problem for automata based
decision procedures.

In the context of languages, adding 1 yields
other problems. However, the free represen-
tation we get for reversible Kleene lattices re-
mains more tractable than that of Kleene alle-
gories. In particular we do not create cycles in
series parallel graphs, but rather have to collect
additional information. Let us illustrate this
with the following inequation:

c · (1 ∩ a) ≤ a · c. (1)

On the left hand side (LHS), the term 1 ∩ a
appears. This term is either equal to 1 if the
empty word belongs to language a, or 0 other-
wise. In the first case, the LHS is equal to c and
we have 1 ≤ a, meaning that c = 1 · c ≤ a · c.
In the second case the LHS is equal to 0, which
is contained in a · c as well. The key observa-
tion here is that the second case does not really
matter: in a term build out of concatenations,
intersections, converse, variables and units, if
0 appears somewhere then the term will al-
ways evaluate to 0 and thus be contained in
any other term. The free representations we
develop for union-free terms consist of pairs of
a representation of a 1-free term and a set of
language variables that are assumed to contain

the empty word. This allows us to make the
reasoning we used to study (1) automatic.

Following an approach similar to [4], we first
construct the free representation of reversible
Kleene lattices, and introducing a new Petri net-
based automata model we show that testing the
validity of equations is a decidable problem,
and in fact an ExpSpace-complete one. This
part of the development is available online [3].
Using the fact that without the Kleene star
these free representations are finite, we build
on ideas from [1] to find an prove correct a
complete finite axiomatisation of the theory of
languages over the signature 〈0, 1,+, ·,∩, _N〉,
using the proof assistant Coq.
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The complexity of non-uniform CSPs

Andrei A. Bulatov

In a constraint satisfaction problem (CSP for short) the question is whether or

not it is possible to find an assighment of values to given variables so that given

constraints are satisfied. Various form of the CSP are ubiquitous in many areas of

mathematics and computer science and have been extensively studied over the last

several decades.

One of the prominent questions in the CSP research is the complexity of and al-

gorithms for so called non-uniform CSPs, that is, CSPs in which the allowed values

belong to a finite set D and the set of allowed constraints is also restricted. This

set of allowed constraints is often called a constraint language, and the resulting

restricted CSP for a constraint language Γ is denoted by CSP(Γ).
For every Γ the problem CSP(Γ) belongs to NP and many examples of con-

straint languages have been found that give rise to NP-complete problems or prob-

lems solvable in polynomial time. A complete complexity classification of non-

uniform CSPs has been a major open problem since 1978, when Schaefer obtained

such a classification for CSPs over a 2-element set. In 1993 Feder and Vardi pro-

posed the CSP Dichotomy conjecture that states that for every constraint language

Γ on a finite set CSP(Γ) is either solvable in polynomial time or is NP-complete.

Since then the Dichotomy conjecture has attracted much attention of researchers

from different fields.

The most fruitful method of approaching this conjecture relates constraint lan-

guages and the complexity of the CSP to properties of universal algebras. Many

strong results in this area have therefore been obtained within the algebraic commu-

nity. In this talk we review the main ideas that lead up to resolving the Dichotomy

conjecture and outline the solution algorithm for CSP(Γ) that works in the cases

when the problem can be solved in polynomial time.
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The Borel complexity of embeddability between torsion-free
abelian groups: a case for almost-fullness

Filippo Calderoni

Working in the framework of generalized descriptive set theory we prove that,
for every uncountable cardinal κ = κ<κ, there exists a Borel reduction from the
relation of embeddability between κ-sized graphs to embeddability between κ-
sized torsion-free abelian groups ([1]). The proof relies on a modification of an
almost-full embedding of the category of graphs into the category of abelian
groups, that was found by Przeździecki in [2].

As a corollary of our result we get that, for every uncountable cardinal
κ = κ<κ, the relation of embeddability between κ-sized torsion-free abelian
groups is a complete Σ1

1 quasi-order.
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Dualizable algebras of arbitrary nilpotence class

Eran Crockett, Binghamton University

Abstract

In the early 2000s, Szabo and Quackenbush showed that groups and rings with a non-
abelian nilpotent congruence are not dualizable. More recently, Bentz and Mayr showed
that algebras in a modular variety that have a nonabelian supernilpotent congruence are
also nondualizable. However, they did find an example of a dualizable algebra of nilpotence
class 2 with infinite signature. We exhibit dualizable algebras of arbitrary nilpotence class
with finite signature.
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A Polynomial-Time Test for a
Difference Term in an Idempotent
Variety

William DeMeo, Ralph Freese, and Matthew
Valeriote

Abstract. We consider the following practical question: given a finite
algebra A in a finite language, can we efficiently decide whether the vari-
ety generated by A has a difference term? We answer this question in the
idempotent case and then describe possible algorithms for constructing
difference terms.
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Ramsey theory and the universal triangle-free graph

Natasha Dobrinen, University of Denver

Abstract

We present the solution to a long-standing open problem regarding the big Ramsey
degrees of the universal triangle-free graph. The development of several new techniques
are involved in the proof. One of these is a Ramsey theorem for strong coding trees, the
proof of which uses the set-theoretic method of forcing to obtain a result in ZFC. These
techniques will likely be useful for solving a collection of open problems regarding big
Ramsey degrees of universal structures.

Ramsey theory on relational structures can be studied from two vantage points. Clas-
sically, structural Ramsey theory extends Ramsey’s theorem to certain classes of finite
relational structures. A Fraisse class of finite relational structures (such as finite ordered
graphs) has the Ramsey property if for any structure A which embeds into a structure B,
there is a structure C such that for any coloring of all copies of A in C into k colors, there
is a copy of B in C in which all copies of A have the same color.

Of much recent interest, is the study of colorings of copies of a finite structure inside
an infinite homogenous, universal structure. For example, it is well-known that any finite
coloring of the vertices of the Rado graph can be reduced to one color on a subgraph which
is also a Rado graph. For edges and other structures with more than one vertex, Sauer
has proved this to be impossible. However, Sauer also proved that given a finite graph
A, there is a number n(A) such that any coloring of all copies of A in the Rado graph
into finitely many colors may be reduced to n(A) colors on a copy of the Rado graph.
Using the terminology of Kechris, Pestov and Todorcevic, we say that the Rado graph has
finite big Ramsey degrees. Similar results have been obtained for several other countable
homogeneous structures, though most are still open.

The problem of finite big Ramsey degrees for the universal, homogeneous triangle-free
graph H, constructed by Henson in 1971, has been open for some time, the problem being
solved for vertex colorings by Komjath and Rodl in 1986, and for edge colorings by Sauer in
1998. The speaker has proved that for each finite triangle-free graph G, there is a number
n(G) such that for each coloring of all copies of G in H into finitely many colors, there is
a subgraph H’ of H which is again universal triangle-free, and in which all copies of G in
H’ take on no more than n(G) many colors. The methods developed for this proof include
new Ramsey theorems on trees, and will likely have bearing on solving the big Ramsey
degree problem for other universal homogeneous relational structures omitting some type.
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SYMMETRY IN QUOTIENTS OF PARTIALLY ORDERED SETS

DWIGHT DUFFUS

Given partially ordered sets X and Y , Y X , the (cardinal) power, denotes the set of
all order preserving maps of X to Y , with the pointwise order, that is, the order
inherited from the |X|-fold power of Y . This operation is a familiar part of Birhkoff’s
generalized arithmetic based on sums, products and powers [1, 2] as well as his repre-
sentation of distributive lattices as rings of sets. Aspects of the arithmetic have been
studied for decades, with the most satisfying cancellation and refinement results for
powers obtained by Jónsson and McKenzie (for instance, [9, 10, 13, 14]).

Quotients defined on powers play a role in investigations of symmetry properties of
ordered sets. Given a partially ordered set P and any subgroup G of Aut(P ), P/G
denotes the set of orbits under G with the order induced by P : for x, y ∈ P , [x] ≤ [y]
in P/G if there are x′ ∈ [x], y′ ∈ [y] with x′ ≤ y′ in P . Stanley and others were
interested in whether symmetry properties such as the unimodality and symmetry
of level numbers and the strong Sperner property, which hold in Boolean lattice or
power 2n, are preserved by quotients (see [15, 16, 17]). They obtained several positive
results but had no luck with symmetric chain decompositions (SCD’s). Recall that a
ranked partially ordered set P has an SCD or is a symmetric chain order (SCO) if it
can be partitioned by chains, each saturated and symmetric about the middle of P .

The automorphism group of the Boolean lattice 2n is given by the natural action of
the symmetric group Sn on the the subsets of the underlying n-set, say [n]. Several
recent articles have dealt with the conjecture that for all subgroups G of Sn, 2

n/G
is an SCO (see [3] for the conjecture and [4, 5, 6, 7, 8, 11] for progress). In sum, we
have made a bit of progress beyond the cyclic group Zn: see Theorem 1 in [6] and
Theorem 1.1 in [4]. There are many interesting directions to go.

Problems for Specific Groups: Determine whether the following are SCO’s.

(1) 2n/D2n – This is a small step from Zn but has not been solved (see [7]).

(2) 2n/A – Here A is an n-element abelian group and we take the regular rep-
resentation of A in Sn. If n is prime, A is generated by a product of disjoint
n-cycles so Theorem 1 in [6] applies, as it may for some embeddings for arbi-
trary n but rarely to the regular representation (see [6]).

(3) 2(
n
2)/S

{2}
n – The set of all labelled graphs on vertex set [n], ordered by con-

tainment, is isomorphic to 2(
n
2). Let S

{2}
n denote the action of Sn on the

2-subsets of [n] and regard this as a subgroup of the full symmetric group on
the set of all 2-subsets. This quotient is isomorphic to the set of unlabelled
graphs on n vertices ordered by embedding. The analogous structure can be
defined for k-uniform hypergraphs (see [15]).

(4) 2k×t – Let n = kt and think of [n] as a set of t columns each of length
k. Consider the permutations obtained by permuting within the columns
independently and then permuting the columns. These form a subgroup of
Sn, the wreath product Sk � St. The quotient 2kt/Sk � St is isomorphic to the

Date: May 31, 2017.
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2 DWIGHT DUFFUS

power above, the set of order ideals of the chain product k× t. So, Stanley’s
results verify rank symmetry and unimodality, and that the power has the
strong Sperner property, but he was left to conjecture that it is an SCO [16]).

(5) 22
n
– This is the free distributive lattice on n generators. This has been con-

jectured to be an SCO in [12]. An obvious question is whether it is a quotient.

There is a general question converse to the one in (5): for which subgroups G of Sn

is 2n/G a distributive lattice (see §7 in [16])? Even more general questions involving
powers and quotients could begin with Jónsson’s result that under some conditions,
Aut(XY ) ∼= Aut(X)× Aut(Y ) via the natural map. When the automorphism group
is this nicely described, is there anything interesting to say about the quotient of XY

by Aut(XY )?
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Representing finite lattices as congruence lattices

William DeMeo1, Ralph Freese1, and Peter Jipsen2

1 University of Hawaii
2 Chapman University

Abstract

We explore various aspects of the problem of representing a finite lattice as the congru-
ence lattice of a finite algebra or an interval in the subgroup lattice of a finite group. We
explore several constructions. Minimal representations are discussed including computer
programs to find them. A catalog of representations of small lattices is given. It is shown
that every lattice with at most seven elements, with only one possible exception, has a
representation.
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Undecidability for some varieties of commutative

residuated lattices

Nick Galatos*1 and Gavin St. John1

University of Denver
ngalatos@du.edu

Residuated lattices were introduced in the study of rings via their ideal lattices, but also
include as examples Boolean, Heyting and MV-algebras, lattice-ordered groups, and reducts
of relation algebras, among others. They have also received a lot of attention as they serve
as algebraic models of various substructural logics. A residuated lattice has a lattice reduct
and a monoid reduct, and the monoid operation is residuated (via two division operations,
functioning as implication in the logical interpretation). As can be seen in the above examples
this additional monoid operation could be as varied as multiplication of ideals, the meet opera-
tion itself, group multiplication, or relational composition. The equational theory of residuated
lattices is decidable, and this can be seen via the proof-theoretic calculus of the correspond-
ing substructural logic, while their quasi-equational theory (actually their word problem) is
undecidable, as one can embed semigroups. The same decidability and undecidability results
hold for commutative residuated lattices (where the monoid operation is commutative). The
addition of further identities changes things, however. All subvarieties of commutative resid-
uated lattices axiomatized by non-trivial inequalities between monoid terms have a decidable
quasi-equational theory (actually they enjoy the finite embeddability property). The same does
not hold without the assumption of commutativity, as undecidability of the quasi-equational
theory is preserved even in such subvarieties (with only a handful of exceptions). No proper
subvariety of commutative residuated lattices that has undecidable quasi-equational theory was
known, but we identify infinitely many such and among them some that have even undecid-
able quasi-equational theory. This is done by embedding a variant of Minski (counter/register)
machines, and in particular one with undecidable halting problem. Our identities involve the
join operation together with the monoid multiplication, and make use of join in order to model
parallel computation. Also, since the addition of the identities affects computation a standard
encoding used for the whole variety does not work, so we need to store the contents of the
registers as powers of some fixed integer, whose size is determined by the identity that is being
added. Identities that are captured by this process are described by the absence of positive
solutions to some systems of linear inequalities. The correctness of the encoding of the machine
is established using some relational semantics for residuated lattices based on Birkhoff polarities
for lattices. The undecidability of the equational theory is then obtained through a reduction
to it of the quasi-equational theorem via a deduction theorem.
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Join-Completions and the Finite Embeddability Property

José Gil-Férez1, Luca Spada2, Constantine Tsinakis3, and Hongjun Zhou4

1 University of Bern
2 University of Salerno
3 Vanderbilt University

4 Shaanxi Normal University

Abstract

We present a systematic study of join-extensions and join-completions of ordered alge-
bras, which naturally leads to a refined and simplified treatment of fundamental results and
constructions in the theory of ordered structures ranging from properties of the Dedekind-
MacNeille completion to the proof of the finite embeddability property for a number of
varieties of ordered algebras.
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Strange ultrafilters.

Moti Gitik
Tel Aviv University

Let F be a κ−complete ultrafilter over κ and n, 0 < n < ω. How many ways are there to

project F n onto F?

Clearly, we have the projections to each of n many coordinates. But are there any other

projections?

It is not hard to see that once F is normal, then - no.

Let us deal with general F ’s.

Our aim will be to show that:

Theorem 0.1 1. If n = 1, then there is a unique way to project F to itself.

2. For every s, 1 < s < ω, it is possible to have F such that F 2 can be projected to F into

s−many different ways.

3. Assuming strong, it is possible to have F such that F 2 can be projected to F into

infinitely many ways.

Note that intuitively, if we have say three copies of F inside F × F at different places,

then their envelope (the ultrafilter they generate) should be F 3. But F 3 is not Rudin -

Kiesler below F 2.

The result has the following somewhat curious corollaries:

Corollary 0.2 Let F be as in the previous theorem. Let PF be the Prikry forcing with F

and �ξ a Prikry sequence. Then, in V [�ξ] there is another Prikry sequence �η for F (over V )

which is disjoint from �ξ.

Clearly the above situation is impossible once F is normal.

Corollary 0.3 Let F be as in (3) of the previous theorem. Let PF be the Prikry forcing with

F and �ξ a Prikry sequence. Then, in V [�ξ] there are κ pairwise disjoint Prikry sequences

〈�ηγ | 1 ≤ γ ≤ κ〉 for F (over V ) which are also disjoint from �ξ.

1

23



Hypergraphs and cone lattices

James B. Hart and Matthew Wiese

Middle Tennessee State University

Abstract

Stated simply, “cone lattices” are structures which are (isomorphic to) the ideal com-
pletions of the incidence poset for a hypergraph. In this presentation, we motivate the
term “cone lattice” and explore the structure of these objects. In particular we show that
the following statements are logically equivalent.

1. A lattice L is order isomorphic to the frame of opens for a hypergraph endowed with
the Classical topology.

2. A lattice L is bialgebraic, distributive, and its subposet of completely join-prime
elements forms the incidence poset for a hypergraph.

3. A lattice L is a cone lattice.

In addition, we will show that well-known forbidden substructure conditions characterize
those cone lattices associated with multigraphs and simple graphs. Time permitting, we
will also indicate how this characterization leads to a Stone-type duality between the cat-
egories of hypergraphs coupled with anchored, finite-based (hyper) graph homomorphisms
and cone lattices coupled with frame homomorphisms that preserve compact elements.
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Algebraic foundations for qualitative calculi and networks.

Robin Hirsch, Marcel Jackson, and Tomasz Kowalski

Abstract

A qualitative representation φ is like an ordinary representation of a relation algebra,
but instead of requiring (a; b)φ = aφ|bφ, as we do for ordinary representations, we only
require that cφ ⊇ aφ|bφ ⇐⇒ c ≥ a; b , for each c in the algebra. A constraint network is
qualitatively satisfiable if its nodes can be mapped to elements of a qualitative represen-
tation, preserving the constraints. If a constraint network is satisfiable then it is clearly
qualitatively satisfiable, but the converse can fail. However, for a wide range of relation
algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others,
a network is satisfiable if and only if it is qualitatively satisfiable.

Unlike ordinary composition, the weak composition arising from qualitative represen-
tations need not be associative, so we can generalise by considering network satisfaction
problems over non-associative algebras. We prove that computationally, qualitative rep-
resentations have many advantages over ordinary representations: whereas many finite
relation algebras have only infinite representations, every finite qualitatively representable
algebra has a finite qualitative representation; the representability problem for (the atom
structures of) finite non-associative algebras is NP-complete; the network satisfaction
problem over a finite qualitatively representable algebra is always in NP; the validity of
equations over qualitative representations is co-NP-complete. On the other hand we
prove that there is no finite axiomatisation of the class of qualitatively representable alge-
bras.
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A LATTICE THEORETIC APPROACH TO
PERMUTOHEDRA

TRISTAN HOLMES

Abstract. We present an introduction to generalized permuto-
hedra suitable for an audience familiar with the basics of lattice
theory. We begin by stating the definition of the permutohedron
arising from a partially ordered set E and illustrate standard ex-
amples such as the weak Bruhat order on symmetric groups. There
are limits to this construction that are overcome by Santocanale
and Wehrung’s generalized permutohedron. We conclude by stat-
ing several open questions.

Let E be a partially ordered set, and let δE := {(p, q) ∈ E × E | p < q}
be the strict ordering on E. We define cl(a) to be the transitive closure
of any a ⊆ δE, and int(a) = δE \ cl(δE \ a). Set

P(E) := {a ∈ δE | a = cl(a) = int(a)} ,
R(E) := {a ∈ δE | a = cl int(a)} .

We call P(E) the permutohedron on E, R(E) the extended permutohe-
dron on E and order both by set containment.

Denote by [n]the chain consisting of n elements. For convenience,
we say P(n) := P([n]). In this case P (n) is isomorphic to the sym-
metric group on n letters equipped with the weak Bruhat order. More
generally, modifications of this approach allow for a realization Read-
ing’s Cambrian lattices of type A by way of this closure operator. An
important class of such lattices is the so called Tamari lattices A(n).

Theorem 1 (Pouzet et. al.). We call E square free if it contains no
copy of the four element Boolean lattice. The partially ordered set P(E)
is a lattice if and only if E is square free.

Theorem 2 (Santocanale and Wehrung). The partially ordered set
R(E) is an ortholattice for any partially ordered set E. Moreover, R(E)
is the Dedekind-MacNielle completion of P(E).

The weak Bruhat order has been studied from a combinatorial per-
spective for some time. A lattice theoretic approach to this and its
possible generalizations is quite recent. A great deal of progress in this
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regard has been made in the last five years, summarized in the findings
of Santocanale and Wehrung’s latest paper on the topic.

Theorem 3 (Santocanale and Wehrung).

A: The equational theory of all P(n) and the equational theory of
all A(n) are both decidable.

B: There exists a lattice identity that holds in all P(n) and fails
in a certain 3,388-element lattice.

C: The equational theory of all extended permutohedra over arbi-
trary and possibly infinite partially ordered sets is trivial.

There are numerous open questions relating to these results that can
motivate further research.

• It is known that every Coxeter lattice of type B can be embed-
ded into some P(n). Is this true for all Coxeter lattices? Are
they at least members of the variety generated by all P(n)?

• Is it decidable whether the class of lattices satisfying a given
identity is contained in the variety generated by all permutohe-
dra (but not extended permutohedra)? Can the variety of all
permutohedra be defined by finitely many (and therefore one)
lattice identity?

• Can the known results be extended to varieties and quasivari-
eties of permutohedra viewed as ortholattices, i.e., lattices with
an additional unary operation of complementation?

• While it is known that the equational theory of all P(n) and
of all A(n) are decidable, the known algorithms are intractable.
Can tractable algorithms for these problems be found?
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On the enduring impact of Bjarni’s work in Lattice Theory,

Relation Algebras and Boolean Algebras with Operators

Peter Jipsen

Chapman University, Orange, California
jipsen@chapman.edu

Abstract: This tutorial will cover some of the highlights of Bjarni Jónsson’s influential re-
search on lattices, algebras of binary relations and the general theory of Boolean algebras with
operators. In the first session we will consider some of the details of this work and how it lead
to the modern view of algebraic logic, as well as several other research directions. In the second
session we focus on how Bjarni’s approach generalizes to residuated lattices, (topological) resid-
uated frames and ordered partial algebras with complex algebras that are residuated Heyting
algebras. Some applications to computer science and the semantics of concurrent programs will
also be featured.

Listed below are some of Bjarni’s papers that are directly related to this tutorial.
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Cologic for profinite structures and coalgebras

Alex Kruckman

Indiana University
akruckma@indiana.edu

Abstract

The existence of a categorical dual to first-order logic is hinted at in several indepen-
dent bodies of work: (1) Projective Fräıssé theory, (2) The “cologic” of profinite groups
(e.g. Galois groups), which plays an important role in the model theory of PAC fields,
(3) Ultracoproducts and coelementary classes of compact Hausdorff spaces, (4) Universal
coalgebras and coalgebraic logic.

In this talk, I will show how to generalize the role of the category of sets in ordinary
first-order logic, replacing it with an arbitrary locally finitely presentable (LFP) category.
Objects of this category are the domains of structures, while the full subcategory of finitely
presentable objects is the category of variable contexts. Then, noting that categories of
profinite structures (e.g. Stone, ProFinGrp, etc.) are co-LFP, we can build this logic for
their dual categories. The result is a first-order cologic, suitable for describing profinite
structures and coalgebras via their finite quotients.

Using Gabriel-Ulmer duality, cologic (and any first-order logic on an LFP category) is
interpretable in an ordinary multi-sorted first-order framework, which allows us to easily
import theorems and notions from ordinary first-order model theory.
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ON HORIZONTAL SUMS OF MV-ALGEBRAS

JAN KÜHR

Effect algebras are an abstraction of the additive structure of Hilbert space effects [3]; they
are certain partially ordered partial commutative monoids. Lattice-ordered effect algebras
can in a natural way be made into (universal) algebras 〈A,⊕, ′, 0, 1〉 and the class of such
algebras, E , is a variety [1]. Perhaps the best known subvarieties of E are the variety of MV-
algebras, MV , and the variety (term equivalent to the variety) of orthomodular lattices,
OM. I will focus on some common properties of the subvarieties of E that we studied in our
earlier papers [2, 4, 5].

(i) The subdirectly irreducible members of these subvarieties, except for MV ∨OM, are
either MV-chains or horizontal sums of MV-chains. I will characterize the class Hor(MV) of
horizontal sums of MV-algebras and axiomatize the variety generated by Hor(MV); this is
done using the “commutator” γ(x, y) = (x′ ⊕ (x⊕ y))∧ (y′ ⊕ (y⊕ x)). The class Hor(MVC)
of horizontal sums of MV-chains generates a smaller variety.

(ii) The subvarieties in question, except for MV ∨ OM, have “nice” ideals (that is, the
congruence kernels are exactly the order ideals closed under ⊕). The class of all lattice effect
algebras with such “nice” ideals, N , is not closed under products. I will prove that every
subvariety of N is contained, for some positive integer k, in the variety Nk = MV∨Ek where
Ek is the variety generated by horizontal sums of MV-chains of length ≤ k. Relative to E ,
the variety Nk is axiomatized by the identity x ≤ kx ⊕ y. Further, I will prove that the
variety generated by N is equal to: (1) the variety generated by Hor(MVC), (2) the join of
the Ek’s, (3) the join of the Nk’s.
(iii) Roughly speaking, certain elements of algebras in the varieties in question, including

MV ∨ OM, have special properties. For instance, the variety generated by Hor(MV) can
be specified by the condition that the elements γ(x, y) are central. Using this observation,
I will axiomatize the varietal joins Nk ∨ OM.
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Generalized Residuated Frames

Giuseppe Greco1, Peter Jipsen2, Fei Liang1,3, and Alessandra Palmigiano1,4 �

1 Delft University of Technology, Netherlands
2 Chapman University, California, USA

3 Institute of Logic and Cognition, Sun Yat-sen University, China
4 University of Johannesburg, South Africa

This talk reports about ongoing work in which we generalize the framework of

residuated frames, introduced in [4] to give a semantic proof of cut admissibility for

various axiomatic extensions of the basic Lambek calculus, and applied to the proof of

the finite embeddability property and finite model property for some of these.

Our generalization concerns two aspects:

1. from the signature of residuated lattices to arbitrary normal lattice expansions; in

particular, arbitrary signatures do not need to be closed under the residuals of each

connective.
2. from structural rules of so-called simple shape to the more general class of analytic

structural rules (cf. [5], Definition 4) in any signature of normal lattice expansions.

Specifically, for every signature (F ,G) 5 of normal lattice expansions (cf. [3][2]) we

define the associated notion of (F ,G)-frame, and we prove that

1. the cut rule is admissible in the Gentzen calculus associated with the basic normal

lattice logic in the signature (F ,G). We prove this result by suitably generalizing

the semantic argument given in the proof of Theorem 3.2 in [4].
2. the cut admissibility above transfers to extensions of the Gentzen calculus above

with structural rules generalizing the notion of simple structural rules (cf. Section

5 in [5]). We prove this result by suitably generalizing the argument given in the

proof of Theorem 3.10 in [4].
3. the cut admissibility above transfers to the display calculus [1] (in which ∧,∨ do

not have structural counterparts) for the basic normal lattice logic in the signature

(F ,G) and to its extensions with arbitrary analytic structural rules (cf. Definition

[5]). This result follows from the previous one and the fact that every analytic struc-

tural rule is equivalent to a set of generalized simple rules (cf. Proposition 60 in

[5]).

In this talk, we will also discuss applications of these result such as the finite model

property and finite embeddability property for axiomatic extensions of modal expan-

sions of full Lambek calculus.

� This research is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia grant

015.008.054, and a Delft Technology Fellowship awarded to the second author in 2013.
5 For any f ∈ F (resp. g ∈ G), we let n f ∈N (resp. ng ∈N) denote the arity of f (resp. g), and the

order-type ε f (resp. εg) on n f (resp. ng) indicate whether the i−th coordinate of f (resp. g) is

positive (ε f (i) = 1, εg(i) = 1) or negative (ε f (i) = ∂, εg(i) = ∂). The order-theoretic motivation

for this partition is that the algebraic interpretations of F -connectives (resp. G-connectives),

preserve finite joins (resp. meets) in each positive coordinate and reverse finite meets (resp.

joins) in each negative coordinate.
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Reconstructing an orthomodular poset from its poset of Boolean subalgebras
Bert Lindenhovius, Tulane University, New Orleans, alindenh@tulane.edu

In this contribution we consider the set B(P ) of Boolean subalgebras of an orthomodular poset
P . We order B(P ) by inclusion and aim to construct an orthomodular poset isomorphic to P from
B(P ) and its order structure.

B(P ) is related to posets of commuting subalgebras of operator algebras. For instance given
a C*-algebra A, one can consider the poset C(A) of commutative C*-subalgebras [1, 7, 12, 13].
Similarly, a von Neumann algebra M has been studied by means of its poset V(M) of commutative
von Neumann subalgebras [4, 6]. The set Proj(A) of projections in a C*-algebra A forms an
orthomodular poset, which is Boolean if A is commutative. This leads to connections between
C(A) and B(Proj(A)) as exposed in [14, Chapter 6]. B(P ) can also be regarded as a poset of
‘commutative subalgebras’, since any subset B ⊆ P containing 0 and 1, and that is closed under
meets, joins, and the orthocomplementation is a Boolean algebra if and only if each pair p and q
of elements in B commute in the following sense: there are pairwise orthogonal e1, e2, e3 ∈ B such
that p = e1 ∨ e3 and q = e2 ∨ e3.

The origins of the study of B(P ) lie in the work of Sachs, who studied the special case of P
being a Boolean algebra, proving that B(P ) determines Boolean algebras P up to isomorphism
[15]. Only relatively recently Sachs’ result was generalized by Harding and Navara in [9] to
orthomodular posets as follows. Given two orthomodular posets P and Q, they showed that every
order isomorphism B(P ) → B(Q) is induced by an orthomodular isomorphism P → Q, which is
unique if P does not have blocks (i.e. maximal Boolean subalgebras) of precisely four elements.

As an open problem Harding and Navara stated the direct construction of an orthomodular
poset in terms of B(P ) that is isomorphic to P . A partial solution for the case of atomic ortho-
modular lattices was given by Constantin and Döring in [3]. Our main contribution is a solution
to this problem for orthomodular posets P satisfying some mild condition on the center of P (i.e,
the set of all p ∈ P that commute with every element in P ):

Theorem 1. Let P be an orthomodular poset whose center has more than four elements. Then
we can construct an orthomodular poset in terms of B(P ) that is isomorphic to P .

To sketch a proof of the theorem, we first assume that P is Boolean, and consider the principal
ideal subalgebras of P , i.e., Boolean subalgebras of P of the form ↓ p ∪ ↑ p⊥, where ↓ p = {q ∈
P : q ≤ p}, and p⊥ is the orthocomplement of p. An order-theoretic characterization of these
subalgebras as elements of B(P ) is given in [9, Proposition 3.4]. Since ↓ p ∪ ↑ p⊥ = P for both
p = 1 and co-atoms p, principal ideal subalgebras are not sufficient for reconstructing P from
B(P ). A solution is to consider the set P(P ) of pairs (D0, D1) of principal ideal subalgebras
satisfying at least one of the following conditions:

(P0) D0 = {0, 1} and D1 = P ;

(P1) D0 = P and D1 = {0, 1};
(P2) D0 is an atom of B(P ), and D1 = P ;

(P3) D0 = P , and D1 is an atom of B(P );

(P4) D0 ∩D1 is an atom of B(P ), and D0 ∩D1 is not an principal ideal subalgebra.

Furthermore, we define a binary relation on P(P ), denoted by ≤, and defined by (D0, D1) ≤
(E0, E1) if and only if all of the following conditions hold:

(O1) D0 ⊆ E0;

(O2) E1 ⊆ D1;

(O3) If (D0, D1) satisfies (P2) and (E0, E1) satisfies (P3), then D0 �= E1.

1
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Moreover, we define a map P(P ) → P(P ), denoted by (D0, D1) �→ (D0, D1)
⊥, defined by

(D0, D1) = (D1, D0). Then one can show that there is a bijection ΨP : P → P(P ) defined
by ΨP (p) = (↓ p ∪ ↑ p⊥, ↓ p⊥ ∪ ↑ p⊥) such that p ≤ q if and only if ΨP (p) ≤ ΨP (q) and such that
ΨP (p

⊥) = ΨP (p)
⊥. In other words, P(P ) is a Boolean algebra isomorphic to P . If B ∈ B(P )

contains more than four elements, then we can construct in the same way a Boolean isomorphism
ΨB : B → B(B), but there is also an order embedding ΨP,B : P(B) → P(P ) that preserves the
orthocomplementation, satisfies ΨP = ΨP,B ◦ΨB , and which has image

Im(ΨP,B) = {(D0, D1) ∈ P(P ) : D0 ∩D1 ⊆ B}

such that ΨP,B

(
(B ∩D0, B ∩D1)

)
= (D0, D1) for each (D0, D1) ∈ Im(ΨP,B).

The next step is to consider an orthomodular poset P . Each maximal element M of B(P )
is exactly a block; the down-set ↓M is order isomorphic to B(M), hence we apply our method
of reconstructing Boolean algebras to ↓M , and find a Boolean algebra in terms of B(P ) that is
isomorphic to M . Finally, we glue the resulting Boolean algebras together in order to obtain an
orthomodular poset in terms of B(P ) that is isomorphic to P . To be more precise: we define

P(P ) =
⋃

M∈maxB(P )

P(M)

/
∼,

where ∼ is an equivalence relation on
⋃

M∈maxB(P ) P(M) defined by (D0, D1) ∼ (D0, D1) for

(D0, D1) ∈ P(M), (E0, E1) ∈ P(N), M,N ∈ maxB(P ) if and only if there is a B ∈ [C(P ),M ∩N ]
(the condition on the center assures that B has more than four points) and a (F0, F1) ∈ P(B)
such that

ΨM,B(F0, F1) = (D0, D1), ΨN,B(F0, F1) = (E0, E1).

If [(D0, D1)] denotes the equivalence class of (D0, D1), we define the order on P(P ) by
[(D0, D1)] ≤ [(E0, E1)] if and only if there are (D′

0, D
′
1) ∈ [(D0, D1)] and (E′

0, E
′
1) ∈ [

E
]
such

that (D′
0, D

′
1) ≤ (E′

0, E
′
1). The orthocomplementation on P(P ) is defined by

[(D0, D1)]
⊥
=

[
(D0, D1)

⊥] .
One now can show that the map p �→ [ΨM (p)] where M is a block containing p is an orthomodular
isomorphism P → P(P ).
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Subcompletions of representable relation algebras

Roger Maddux, Iowa State University

Abstract

The variety of representable relation algebras is closed under canonical extensions but
not closed under completions. What variety of relation algebras is generated by completions
of representable relation algebras? Does it contain all relation algebras? It contains all
representable finite relation algebras, and this paper shows that it contains many non-
representable finite relation algebras as well. For example, every Monk algebra with six or
more colors is a subalgebra of the completion of an atomic symmetric integral representable
relation algebra whose finitely-generated subalgebras are finite.
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COMPUTING IN DIRECT PRODUCTS OF ALGEBRAS

PETER MAYR

The subpower membership problem (SMP) for a fixed finite algebra A has as
input tuples a1, . . . , ak, b in An. The question is whether b belongs to the subalgebra
of An generated by a1, . . . , ak. The complexity of this problem is important for the
effectiveness of various approaches to represent constraints in constraint satisfaction
problems (CSP).

We present an overview of complexity results for SMP and related questions for
various structures A. Examples of algebras with tractable, NP-complete, PSPACE-
complete, or EXPTIME-complete SMP are known. The main question that remains
still open is whether every algebra with cube term (or Mal’cev term) has SMP in
P. We show that SMP for every such algebra is in NP. Moreover SMP is in P for
every algebra that generates a variety with cube term in which the centralizers of
monoliths of subdirectly irreducible algebras are supernilpotent.

This is joint work with A. Bulatov, M. Steindl, and Á. Szendrei.
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Another proof of Willard’s Finite Basis Theorem and

Characterizing Congruence Meet Semidistributivity in the

Locally Finite Case

George McNulty, University of South Carolina

Abstract

I will give several conditions that characterize congruence meet-semidistributivity for
locally finite varieties of algebras, based on recent work by Jovanovic, Markovic, McKenzie,
and Moore. I will use these conditions to give a new proof of a finite basis theorem published
by Baker, McNulty, and Wang in 2004. This finite basis theorem extends Willard’s Finite
Basis Theorem. This is joint work with Ross Willard.
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Comparing approaches to duality for compact Hausdorff

spaces

M. Andrew Moshier1

Chapman University, Orange, California, USA
moshier@chapman.edu

Stone duality and its natural relatives like Priestley duality provide valuable tools for the
algebraist and algebraic logician. They neatly provide a way to think about semantics of a given
logic, for example. They also give us constructions of co-limits by transfering limits of dual
spaces. But this story leaves the topologist feeling cold. The spaces that arise from the basic
natural duality procedure are zero-dimensional by their construction. So we can think about
the dual of some peculiar counter-examples in topology such as Cantor space, but not about
non-zero-dimensional spaces such as the real closed unit interval or the sphere. We present a
category dual compact Hausdorff spaces that arises properly as a generalizatin of Stone duality.
We also compare this “natural” approach to another known dual category – that of de Vries.

To find a natural dual to non-zero-dimensional spaces, we identify the source of zero-
dimensionality in Stone duality as the reflexivity of the ≤ relation on complemented distributive
lattices. This suggests a general strategy for obtaining algebraic duals of non-zero dimensional
spaces. In particular, we show that by passing to what we call weakening relations (essentially
generalized entailment relations) and splitting idempotents in the resulting category, we can
remove the obstruction to finding algebraic duals of non-zero dimensional spaces. The result
is a category consisting of disributive lattices equipped with binary relations � that behave in
all respects except reflexivity like ≤ on a complemented distributive lattices. Morphisms are
also binary relations that are compatible with � in an obvious way. Morphims compose via
relational composition.

We contrast the duality theory that arises this way with the more familiar de Vries duality.
For de Vries, the intuition is that a compact Hausdorff space can be recovered from the complete
Boolean algebra of its regular opens together with the rather below relation on regular opens.
So the objects of the de Vries dual category are complete Boolean algebras equipped with a
binary relation ≺ satifying enough conditions to recover a compact regular frame as the ideals
that are round with respect to ≺. The dual of a continuous function sends a regular open in
the codomain to the regularization of the inverse image. So composition of such a morphism
is not concrete function composition. In summary, the objects are complete Boolean algebras
with binary relation. And although morphisms are functions, they do not compose as such.

Comparing the two approaches, our proposal starts with the classical duality of Stone and
generalizes it via well-known category-theoretic techniques (idempotent splitting, mainly). This
results in objects and morphisms that are first-order definable. In contrast, De Vries exploits
the insight that there are “enough” regular opens in a compact Hausdorff space. This is
fundamentally a spatial insight that requires objects to be complete Boolean algebras that are
thus not first-order axiomatizable. Likewise, de Vries morphisms are characterized by reference
to the completeness of the objects and have a composition defined by taking certain infinite
joins.
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An approach to the Dedekind completion

of pointfree function rings by means of scales ∗

Imanol Mozo Carollo

1 Department of Mathematics, University of the Basque Country UPV/EHU, Bilbao, Spain
2 CECAT - Department of Mathematics & Computer Science, Chapman University Orange, USA

imanol.mozo@ehu.eus

In two recent papers ([1, 3]) we presented the construction of the Dedekind completion of

the ring C(L) of continuous real functions on a frame L in three different ways, respectively in

terms of

(1) partial real functions on L,

(2) normal semicontinuous real functions on L, and

(3) Hausdorff continuous functions on L.

In this talk we will take another look at the Dedekind completion of the ring C(L) [2]. The

main purpose will be to present an appropriate unifying framework for the various descriptions,

which will suggest yet another description in terms of certain type of functions. To that end,

we will introduce a notion of generalized scales and we will take advantage of suitable Galois

connections and a general result about Galois connections, showing once more the ubiquity of

(Galois) adjunctions between partially ordered sets and their conceptual simplicity and extent.
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∗Joint work with Javier Gutiérrez Garćıa and Jorge Picado
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A primer of quasivariety lattices

J.B. Nation

University of Hawaii

Abstract

Let Lq(K) denote the lattice of subquasivarieties of a quasivariety K. We sketch a new
proof that Lq(K) is isomorphic to the lattice of H-closed algebraic subsets of an algebraic
lattice with a monoid H of continuous operators. These ideas motivate a construction
that represents certain finite lattices as Lq(K) for a quasivariety K. New properties of the
equational closure operator on Lq(K) are found.

These results are join work with Kira Adaricheva, Jennifer Hyndman and Joy Nishida.
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On the undecidability of standardness

Anvar M. Nurakunov1 and Michał M. Stronkowski2∗

1 Institute of Mathematics, National Academy of Sciences, Bishkek, Kyrgyzstan
a.nurakunov@gmail.com

2 Warsaw University of Technology, Poland
m.stronkowski@mini.pw.edu.pl

Let H be a universal Horn class of algebras. The Boolean core of H is the topological
quasivariety HBC generated by the finite members of H (treated as topological structures with
discrete topology). It means that HBC is the class of topological algebras which are closed
subalgebras of products, with nonempty indexing sets, of finite members of H. Notably, HBC

consists of all profinite structures built, as inverse limits, from finite members of H [4].
In papers [2, 3, 4] the problem of axiomatization of HBC was undertaken. In general,

Boolean cores may behave badly with respect to this issue. Every member of HBC has a
Boolean compatible topology. We call such algebras Boolean topological algebras. It may be
the case that HBC is even not definable by a set of first order sentences within the class of all
Boolean topological algebras of the type under consideration [4]. However, we may have also
a very satisfactory situation when HBC consists exactly of Boolean topological algebras with
algebraic reducts in H. If it is the case, we say that H is standard. In [3] the following problem
was formulated.

Problem 1 ([3]). Is there an algorithm to decide if a given finite algebra of finite type generates
a standard universal Horn class?

The problem is still open. Nevertheless, we propose a solution of its varietal variant. Namely,
we prove the following fact.

Theorem 2. There is no algorithm to decide if a given finite algebra of finite type generates a

standard variety.

It is known that the standardness for a variety V follows from having finitely determined

syntactic congruences (FDSC for short) [3]. It means that there is a finite set F of terms
t(x, ȳ) such that for every algebra A ∈ V and every equivalence relation θ on the carrier A of
A the relation {(a, a′) ∈ A2 | ∀t ∈ F, b̄ ∈ A∗ (t(a, b̄), t(a′, b̄)) ∈ θ} is a congruence of A. This
motivated the authors of [3] to formulate also the following related problem.

Problem 3 ([3]). Is there an algorithm to decide if a given finite algebra of finite type generates
a variety with FDSC?

We give an answer.

Theorem 4. There is no algorithm to decide if a given finite algebra of finite type generates a

variety with FDSC.

Let us describe briefly how Theorems 2 and 4 were obtained. Recall that a first order positive
existential formula Γ(u, v, x, y) is called a congruence formula provided that Γ(u, v, x, x) → u =
v holds in all algebras of the type under consideration. A variety V has definable principal

subcongruences (DPSC for short) provided that there is a congruence formula Γ(u, v, x, y) such
that for every A ∈ V and every pair a, b of distinct elements from A there are distinct elements
c, d ∈ A such that A |= Γ(c, d, a, b) and {(e, f) ∈ A2 | A |= Γ(e, f, c, d)} is a congruence of A
[1]. Recently, based on the work of McKenzie [5], Moore obtained the following result.

∗The work was supported by the Polish National Science Centre grant no. DEC- 2011/01/D/ST1/06136.
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Theorem 5 ([6]). There is no algorithm to decide if a given finite algebra of finite type generates

a variety with DPSC.

We derived Theorems 2 and 4 from Moore’s theorem, some results from [3], and the following
our proposition.

Proposition 6. Let V be a variety. If V has DPSC, then V has FDSC.
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AN ALGEBRAIC APPROACH TO PROMISE CONSTRAINT

SATISFACTION

JAKUB OPRŠAL

The well-known algebraic approach to constraint satisfaction problem (CSP)
has brought a lot of results culminating by recent claims of Bulatov and Zhuk of
complete characterization of complexity of CSPs with a fixed domain up to log-space
reductions. The promise constraint satisfaction problem (PCSP) is a generalization
of CSP. The domain of a PCSP is not one, but two relational structures A,B in
the same language. Usually, it is necessary that there is a homomorphism from B

to A. The promise CSP refer to two closely related problems:

(1) Given a structure in the same language which has a homomorphism to B,
find a homomorphism to A.

(2) Given a structure C in the same language, decide between two cases: there
is a homomorphism from C to B, or there is no homomorphism from C

to A.

An example of such a problem would be approximate (n, k) coloring (the corre-
sponding structures are an n-clique and a k-clique for k > n): Given a graph that
is n-colorable, find a k-coloring of this graph. This approximate graph coloring
is a well known problem in theoretical computer science. These and several other
similar problems were recently studied is by Brakensiek, Guruswami, Austrin, and
H̊astad. They rediscovered a Galois correspondence between pairs of relational
structures and minor closed sets of functions that was before described by Pip-
penger. Nevertheless, while the Galois correspondence is a key ingredient, it lacks
the full power of the algebraic approach, namely an analogue to clone homomor-
phisms. In the talk we will describe the full analogue of the algebraic approach
to PCSP, and explain some hardness results of Brakensiek and Guruswami using
purely algebraic means. This new approach also explains why the complexity of
the standard CSP depends only on linear identities.

Institute of Algebra, Technische Universität Dresden, 01062 Dresden, Germany
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Congruence FD-maximal algebras

Miroslav Ploščica

P.J. Safarik University
miroslav.ploscica@upjs.sk

Abstract

We consider the problem of describing the congruence lattices of finite algebras in
congruence-distributive varieties. We concentrate on the following special case.

A variety V is called congruence FD-maximal, if for every finite distributive lattice L
the following two conditions are equivalent:

(i) L is isomorphic to Con B for some B ∈ V;
(ii) for every meet-irreducible x ∈ L, the lattice ↑ x is isomorphic to Con T for some

(subdirectly irreducible) T ∈ V.
(Notice that (i) always implies (ii).)

The concept of congruence FD-maximality can also be considered for individual alge-
bras, in the following sense.

Let A be a finite subdirectly irreducible algebra generating a CD variety. We say that
A is congruence FD-maximal, if for every finite distributive lattice L the following two
conditions are equivalent:

(i) L is isomorphic to Con B for some B ∈ PsH(A);

(ii) for every meet-irreducible x ∈ L, the lattice ↑ x is isomorphic to Con T for some
(subdirectly irreducible) T ∈ H(A).

In other words, A is congruence FD-maximal iff the class of all finite members of Con
PsH(A) is as large as possible by the necessary condition.

The study of congruence FD-maximal algebras is an essential part of the study of con-
gruence FD-maximal varieties. We consider some special types of congruence distributive
varieties and present a criterion for them, characterizing the congruence FD-maximality.
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Latarres on complete lattices

Wim Ruitenburg, Marquette University

This is a joint project with Mohammad Ardeshir, Sharif University of Tech-
nology.

A latarre is a lattice with meet �, join �, and an arrow � satisfying the
schemas

x � y = (x � y) � y.
x � y = x � (x � y).
y � z implies x � y � x � z.
y � z implies z � x� y � x.
(x � y) � (y � z)� x � z.

where � is the usual order definable by x � y exactly when x � y = x. We
establish a ”decomposition” theorem of a latarre on lattices including frames,
into a Heyting latarre and a Löb fixed point latarre. We will include a brief
introduction to latarres, with examples.

1
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Local finiteness of modal algebras in terms of Kripke

frames partitions

Ilya B. Shapirovsky

Institute for Information Transmission Problems of the Russian Academy of Sciences
shapir@iitp.ru

A logic is locally tabular if it has only finitely many pairwise non-equivalent formulas in each
of its finite-variable fragments. Algebraically, modal logics are equational theories of Boolean
algebras with operators, thus a modal logic L is locally tabular iff the variety of L-algebras is
locally finite. Every locally tabular logic is Kripke complete, i.e., it is the set of formulas valid
in a class of relational structures (Kripke frames). Recently, in our joint work with Valentin
Shehtman, it was shown that local tabularity of unimodal logics can be characterized in terms
of partitions of Kripke frames. In my talk, I will formulate these results, their generalizations
for the polymodal case, and discuss some of their corollaries and related open problems.
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Transpositional sequences and their multigraphs

Donald Silberger∗

June 30, 2017

Abstract

If s := 〈s0, s1, . . . sk−1〉 is a sequence of length |s| = k of permutations on the set n := {0, 1, . . . n−1},
then ©s := s0 ◦ s1 ◦ · · · ◦ sk−1 ∈ Sym(n), and Seq(s) is its set of rearrangements, r := 〈sψ(0), . . . sψ(k−1)〉
with ψ ∈ Sym(k). Our subject is the set Prod(s) := {©r : r ∈ Seq(s)} ⊆ Sym(n). We focus mainly on
sequences which are transpositional; that is, the terms of s are transpositions. For t a transpositional
sequence in Sym(n), there is a natural correspondence between Seq(t) and its transpositional multigraph
T (t) := 〈n;E(t)〉 on the vertex set n, where the k simple edges (a b) ∈ E(t) of T (t) are the k terms of t.

We study two special sorts of transpositional sequences: We call t and T (t) permutationally complete,
abbreviated perm-complete, iff Prod(t) ∈ {Alt(n), Sym(n)\Alt(n)}, where Alt(n) is the group of all even
permutations of the set n. I.e., if t is perm-complete then Prod(t) is as large as possible.

We call t and T (t) conjugacy invariant, aka CI, iff the elements in Prod(t) are mutually conjugate.
Prod(t) is small if t is CI. We specify the CI transpositional sequences in Sym(n), and initiate the study
of those sequences s in Sym(n), each of whose terms has exactly one nontrivial cyclic component.

The talk reports on a paper-in-progress which combines results of the presenter together with those
of his students, Raymond R. Fletcher [6] and Arthur D. Tuminaro [9], and of Fletcher’s student, Alissa
R. Ellis [5], which extend the work of J. Dénes [3] and of M. Eden with M. P. Schützenberger [4].
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Compactness in the universe

Dima Sinapova, University of Illinois at Chicago

Abstract

A structure is an example of compactness if whenever every substructure of smaller
cardinality satisfies a certain property, then the whole structure satisfies it, too.

Key compactness type principles are the tree property and failure of square. An old
project in set theory is to consistently get the tree property at every regular cardinal greater
than ω1. Doing so requires large cardinals and forcing. We will survey some classical
and recent results on obtaining instances of compactness like the tree property. We will
also go over ZFC constraints, highlighting the challenges of obtaining these combinatorial
principles, especially at successors of singular cardinals.
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There are 2ℵ0 pre-maximal extension of the relevant logic E
Entailment logic E was presented by A.R. Anderson and N.D. Belnap in 1975 [1].

However, not much is known about the structure of extension of the logic E; the logic R
and RM and their extensions were a subject of deep investigations [3],[5],[6],[7],[8]. What
has been shown about E is the lack of algebraizability [2]. We also know that the logic E
is not structurally complete [4].

In this talk we try characterize the structure of the lattice of the extension of the logic
E (without constants). We devote our special attention to the upper part of the lattice
of the extension of E. It turns out that there are 2ℵ0 coatoms in the interval [E, CL],
where CL denotes the classical logic, while the interval [R, CL] contains 3 coatoms, and
the interval [RM, CL] contains only one coatom.

The extension of the logic E is called pre-maximal if and only if it is coatom in the
interval [E, CL] (of course the maximal extension of the logic E is CL).

Theorem 1. There are 2ℵ0 pre-maximal extension of the relevant logic E.

We present an infinite binary tree of simple, finite E-algebras. The nodes of this
tree are algebras based on finite chains. Each branch of the tree represents an infinite
denumerable E-algebra.

Let us add some details. The structure of the binary tree in question can be described
by induction.

Step 0 (level 0). The algebra from the level 0 (algebra A0) is based on a 12-element
chain

and the operation → is defined in the table below:

→ a ¬a1 ¬a2 ¬a3 ¬a4 a4 a3 a2 a1 ¬a

a a a a a a a4 a3 a2 a1 a1
¬a1 0 a a a a a4 a3 a2 a2 a1
¬a2 0 0 a a a a4 a3 a3 a2 a2
¬a3 0 0 0 a a a4 a4 a3 a3 a3
¬a4 0 0 0 0 a a4 a4 a4 a4 a4
a4 0 0 0 0 0 a a a a a
a3 0 0 0 0 0 0 a a a a
a2 0 0 0 0 0 0 0 a a a
a1 0 0 0 0 0 0 0 0 a a
¬a 0 0 0 0 0 0 0 0 0 a

1
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The set of designated values of this algebra is [a) = {x : a ≤ x} (it is true for all the
algebras we consider), thus A0 is a simple algebra.

Step 1 (level 1). We construct two new algebras (i.e. A00 and A01) based on A0.
We add new elements a5, ¬a5 to the old ones; now we have the chain 0 < . . . < ¬a3 <
¬a4 < ¬a5 < a5 < a4 < a3 < . . . < 1; the new chain has 14 elements. Next, we define
the operation → in A00 and A01 in the following way. The values of → for elements
0, . . . , ¬a3 and their negations and for ¬a4 remain the same as in A0. In A00 we set
a5 = ¬a1 → a4 and in A01 we set a5 = ¬a4 → a4; in consequence the values for x → a4
and ¬a4 → y must be changed in both algebras.

Step n + 1 (level n+1). Let us consider the algebras from the level n; we denote them
by An where n stands for the 0-1 sequence of the length n with 0 as the first element. The
An-algebras are based on the (12 + 2n)-element chain. Each algebra An determines two
algebras: (An0 and An1) from the level n + 1. Algebras from the level n + 1 are based on
the (12+2(n+1))-element chain, in which 0 < . . . < ¬an < ¬an+1 < an+1 < an < . . . < 1.
As in the step 1, the definition of → in An+1-algebras is based on the definition of →
in An. Let An be fixed. Then in An0 we set an+1 = ¬a1 → an, and in An1 we set
an+1 = ¬an → an. The values for 0, . . . , ¬an−1 and its negations, and for ¬an remain the
same as in the algebra An−1, which precedes the algebra An, and the values of x → an

and ¬an → y must be changed.
Now, if we consider a branch of this tree, we get an infinite denumerable E-algebra;

the operation → can be reconstructed from the An-algebras in this branch.
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CRYPTOGRAPHIC APPLICATIONS OF VERY LARGE

CARDINALS

JOSEPH VAN NAME

A self-distributive algebra is an algebra (X, ∗) that satisfies the identity x ∗ (y ∗
z) = (x ∗ y) ∗ (x ∗ z).

Suppose (X, ∗) is self-distributive. An element x ∈ X is said to be a left-identity
if x∗y = y for all y ∈ X. We say that a subset L ⊆ X is a left-ideal if y ∈ L implies
x ∗ y ∈ L. Let Li(X) denote the set of all left-identities in X.
We say that (X, ∗) is Laver-like if

(1) Li(X) is a left-ideal in X, and
(2) whenever xn ∈ X for n ∈ ω, there is some N ∈ ω with x0 ∗ ... ∗ xN ∈ Li(X)

(Parentheses are grouped on the left. i.e. x ∗ y ∗ z = (x ∗ y) ∗ z).
If (X, ∗) is a Laver-like algebra, then define the Fibonacci terms tn for n ≥ 1 by

letting t1(x, y) = y, t2(x, y) = x, and tn+2(x, y) = tn+1(x, y) ∗ tn(x, y). Then for all
x, y there is some n where tn(x, y) ∈ Li(X). Define an associative operation ◦ on
X \Li(X) by letting x◦y = tn+1(x, y) where n is chosen such that tn(x, y) ∈ Li(X).

The existence of a non-trivial elementary embedding j : Vλ → Vλ is among the
strongest of all large cardinal axioms.

Let Eλ be the set of all elementary embeddings j : Vλ → Vλ. Then define an
operation ∗ on Eλ by letting j ∗ k =

⋃
α<λ j(k|Vα

). (Eλ, ∗) is self-distributive.
If γ is a limit ordinal with γ < λ, then define a congruence ≡γ on (Eλ, ∗) by

letting j ≡γ k iff j(x) ∩ Vγ = k(x) ∩ Vγ for all x ∈ Vγ . Then (Eλ/ ≡γ , ∗) is a
Laver-like algebra.

If n is a natural number, then there is a unique algebra An = ({1, ..., 2n}, ∗) such
that

(1) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), and
(2) x ∗ 1 = x+ 1 mod 2n for all x, y, z

which we shall call a classical Laver table.
Every Laver-like algebra generated by a single element is isomorphic to some An.
Suppose that t is an n + 1-ary operation on a set X. Then t is said to be

self-distributive if it satisfies the identity

t(x1, ..., xn, t(y1, ..., yn, y))

= t(t(x1, ..., xn, y1), ..., t(x1, ..., xn, yn), t(x1, ..., xn, y)).

If (X, t) is an n + 1-ary self-distributive algebra, then define the hull Γ(X, t) =
(Xn, ∗) where ∗ is the binary operation defined by (x1, ..., xn) ∗ (y1, ..., yn) =
(t(x1, ..., xn, y1), ..., t(x1, ..., xn, yn)). Then Γ(X, t) is a self-distributive algebra. We
say that an n+ 1-ary self-distributive algebra (X, t) is Laver-like if its hull Γ(X, t)
is Laver-like.

n + 1-ary Laver-like algebras can easily be produced from the algebras of the
form Eλ/ ≡γ .

1
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2 JOSEPH VAN NAME

In the following key exchange, Alice and Bob want to share a common secret by
communicating over a public channel. A semigroup (X, ◦) and an element x ∈ X
are known to the public.

(1) Alice selects some a ∈ X and then sends r = a ◦ x to Bob.
(2) Bob selects some b ∈ X and the sends s = x ◦ b to Alice.
(3) Let K = a ◦ x ◦ b.
(4) Alice computes K using the fact that K = a ◦ s and Alice knows a, s.
(5) Bob computes K using the fact that K = r ◦ b and Bob knows r, b.

An eavesdropping party will only know x, r, s. No eavesdropping party should be
able to compute K with this information. Therefore K is a shared secret between
Alice and Bob established over a public channel.

Suppose that (X, t•) is an n+1-ary Laver-like algebra. Then let ♦(X, t•) be the
algebra whose underlying set consists of all functions l : {1, ..., n}∗ → X ∪{#} that
satisfies the following

(1) l(ε) ∈ X
(2) l(x) ∈ X for only finitely many x ∈ {1, ..., n}∗
(3) If l(x) = # then l(ix) = #
(4) If l(x) ∈ X then either l(ix) = # for 1 ≤ i ≤ n or l(ix) ∈ X for 1 ≤ i ≤ n.
(5) If l(1x) ∈ X, then there is some x ∈ X where t•(l(1x), ..., l(nx), x) = l(x)
(6) If l(1x) ∈ X, then (l(1x), ..., l(nx)) ∈ Li(Γ(X, t•))

The set ♦(X, t•) can be endowed with a unique operation t� such that

(1) if (l1(ε), ..., ln(ε)) ∈ Li(Γ(X, t•)), then t�(l1, ..., ln, l) = l,
(2) t�(l1, ..., ln, l) = tl(ε)(l1, ..., ln) whenever l(1) = #, and

(3) t�(l1, ..., ln, tx(u1, ..., un)) = t�(t�(l1, ..., ln, u1), ..., t
�(l1, ..., ln, un), tx(l1, ..., ln).

Then (♦(X, t•), t�) is an n+1-ary Laver-like algebra called a functional endomorphic
Laver table.

Furthermore, if there are efficient algorithms for computing l1, ..., ln, l, then one
can also compute t�(l1, ..., ln, l)(x) efficiently.

If (X, t•) is an n+1-ary Laver-like algebra, then (Γ(♦(X, t•))\Li((Γ(♦(X, t•))), ◦)
may be used as a platform for the Ko-Lee key exchange.

In year 1999, Anshel, Anshel, and Goldfeld have constructed a key exchange
which could use any non-abelian group as a platform. In 2013, Kalka and Teicher
have constructed a self-distributive version of the Anshel-Anshel-Goldfeld key ex-
change. This key exchange by Kalka and Teicher extends to n-ary self-distributive
algebras as well. The functional endomorphic Laver tables may be used as a plat-
form for this key exchange.

In 2006, Dehornoy has shown that self-distributive algebras may be used as
platforms for authentication schemes. In particular, the functional endomorphic
Laver tables may be used as platforms for such authentication schemes.
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ics, volume=192, publisher=Birkhäuser Verlag, Basel, date=2000, pages=xx+623, isbn=3-

7643-6343-6, review= MR 1778150 (2001j:20057),
3. Dehornoy: Using shifted conjugacy in braid-based cryptography Patrick DEHORNOY

53



CRYPTOGRAPHIC APPLICATIONS OF VERY LARGE CARDINALS 3

4. Ternary Distributive Structures and Quandles. Mohamed Elhamdadi. Matthew Green. Abde-

nacer Makhlouf. Preprint.

5. Generalizations of Laver tables, Joseph Van Name (in-progress).
http://boolesrings.org/jvanname/wp-content/uploads/2017/03/MultiLaverTables.pdf

6. Non-associative key establishment for left-distributive systems. Arkadius Kalka and Mina Te-

icher

E-mail address: jvanname@mail.usf.edu

54



The finite basis problem, Jónsson’s speculation, and weird

algebras

Ross Willard, University of Waterloo

Abstract

The finite basis problem in universal algebra is basically the following question: for
which finite algebras A in a finite signature is the set of equational identities true in A
finitely axiomatizable? Are there structural properties of A which guarantee a positive or
negative answer?

This problem has a long history, though interest in the problem has faded to the
background in recent years. In this tutorial I will aim to (re-)introduce the problem through
examples, describe some important partial solutions, and state some open problems. I will
pay particular attention to a structural question of Bjarni Jónsson, and to the question of
existence of “bizarrely nonfinitely based” algebras.
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Stonian p-Ortholattices for Pointless Topology

Michael Winter�

Department of Computer Science
Brock University

St. Catharines, ON, Canada
mwinter@brocku.ca

Abstract. In this presentation we will investigate Stonian p-ortholattices
as an algebraic approach to pointless topology. We will focus on their re-
lationship to Boolean Contact algebras and their representation theory.

Stonian p-ortholattice were introduced [5] as the algebraic counterpart to
the the mereotopology RT0 of Asher and Vieu [1]. A Stonian p-ortholattice is
a lattice with three complement operations, a pseudo-complement, an ortho-
complement, and the dual of the pseudo-complement, also called quasi-comple-
ment, satisfying a Stone-like equation. Mereotopology is a branch of pointless
topology and a composition of the topological notion of connectedness (or being
in contact) with the mereological notion of parthood. In this approach regions
are considered basic entities rather than specific sets of points. In the case of
RT0, or equivalently Stonian p-ortholattices, the intended model, i.e., the set of
regions, is the set of regular sets of a topology. A regular set is a set so that its
closure is regular closed and its interior is regular open, i.e., avoiding “isolated
points“ and “cracks“.

Another lattice based approach to mereotopology is given by Boolean Con-
tact Algebras (BCAs), i.e., Boolean algebras with an additional contact relation
C satisfying certain axioms. These lattices correspond to the Region Connection
Calculus [2, 3, 6]. The intended model for these structures is the set of regular
closed sets of a topology. In fact, in [4] a representation theorem by the regular
closed sets for BCAs was shown.

In this talk we present the basic theory of Stonian p-ortholattices. Further-
more, we exhibit the relationship between Boolean Contact Algebras (BCAs)
and Stonian p-ortholattices by using the skeleton of Stonian p-ortholattices as
bridging structure. We show that the skeleton S(L) of an arbitrary Stonian p-
ortholattice L is a BCA when defining the contact relation of the BCA in terms
of the lattice L. On the reverse, we prove that every BCA can be embedded in
a Stonian p-ortholattice. Last but not least, we will address the representation
problem by regular sets for this class of lattices. First, introduce five properties
(RP1), (RP2), (M), (S), as well as a localized version of distributivity (D), that
are always satisfied by lattices constructed from the regular sets of a topological

� The authors gratefully acknowledge support from the Natural Sciences and Engi-
neering Research Council of Canada.
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space. All five properties can be expressed as quasiidentities, thus preserving
the equational character if we extend the theory of Stonian p-ortholattices by
those properties. Then we provide an example of a Stonian p-ortholattice that is
not representable contradicting the completeness claim of RT0 in [1]. An actual
representation theorem is still outstanding.
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Characterizing Supernilpotent Algebras

Alexander Wires, Southwestern University of Finance and Economics, China

Abstract

An algebra is supernilpotent if it is abelian in the sense of the higher commutator
defined by Andrei Bulatov in his work on clones with a Mal’cev term. In the case of Mal’cev
algebras, there is a characterization of supernilpotent algebras which generalizes the affine
structure of abelian algebras (in the sense of the binary term-condition commutator) and
the expanded group structure of 3-supernilpotent algebras. As in these cases, there is an
”ideal” class of algebras which are the abelian models in the higher commutators.

For the theory of the higher commutator in arbitrary varieties, I’ll discuss the possibility
that (1) neutrality of the higher commutators, and (2) supernilpotent algebras interpreting
a Mal’cev term both define Mal’cev conditions.
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Properties of crucial CSP instances.

Dmitriy Zhuk

Let Γ, called a constraint language, be a set of relations (or predicates) on a finite set A.
Constraint Satisfaction Problem CSP(Γ) can be defined as the following decision problem:
given a conjunction of predicates, i.e. a formula

ρ1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ ρs(xis,1 , . . . , xis,ns

),

where ρ1, . . . , ρs ∈ Γ; decide whether the formula is satisfiable.
In 1998 it was conjectured that CSP(Γ) is either in P, or NP-complete [2]. Later it was

conjectured that CSP(Γ) can be solved in polynomial time if Γ is preserved by a weak near-
unanimity operation. Recently, several proofs of this conjecture appeared [4, 1, 6]. In the talk
we consider implications of one of the proof.

As we know from [3] the complexity of CSP(Γ) depends only on the relational clone
generated by Γ. Thus we assume that Γ is a relational clone preserved by a weak near-
unanimity operation.

A CSP instance is called crucial if it has no solutions but the replacement of any constraint
by all weaker constraints from Γ gives an instance with a solution. It turned out that with
few more assumptions (cycle-consistency and irreducibility) every relation of a crucial instance
has parallelogram property. The description of critical relations from [5] implies that every
relation of a crucial instance can be represented as a union of blocks, where each block is
defined by a linear equation. It can be shown that these blocks and linear equations of some
constraints with a common variable are related to each other.

Below we give necessary definitions to formulate mathematical statements explaining this
idea.

1 Definitions

Suppose Θ is a CSP instance with the set of variables X = {x1, . . . , xn}, set of respective
domains D = {D1, . . . , Dn}, set of constraints C = {C1, . . . , Cm}. Θ is called subdirect if its
solution set is a subdirect relation in D1×· · ·×Dn. We say that an instance Θ is fragmented if
the set of variables X can be divided into 2 nonempty sets X1 and X2 such that the constraint
scope of any constraint either has variables only from X1, or only from X2. A CSP instance
is called cycle-consistent if for every i and a ∈ Di, any path starting and ending with xi in Θ
connects a and a. A CSP instance Θ is called linked if for every i and a, b ∈ Di there exists a
path in Θ that connects a and b. A CSP instance Θ is called irreducible if for any C′ ⊆ C and
any set of variables X′ ⊆ X the projection of C′ onto X′ is fragmented, linked, or subdirect.

We say that a relation has parallelogram property if any permutation of variables in ρ
satisfies the following implication

∀α1, β1, α2, β2 : (α1β2, β1α2, β1β2 ∈ ρ ⇒ α1α2 ∈ ρ).

We say that the i-th variable of a relation ρ is compatible with the congruence σ if (a1, . . . , an) ∈
ρ and (ai, bi) ∈ σ implies (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ ρ.

1
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Suppose σ1 and σ2 are congruences on D1 and D2, correspondingly. A relation ρ ∈ D2
1×D2

2

is called a link from σ1 to σ2 if the first two variables of ρ are compatible with σ1, the last
two variables of ρ are compatible with σ2, pr1,2(ρ) � σ1, pr3,4(ρ) � σ2, and (a1, a2, a3, a4) ∈ ρ
implies (a1, a2) ∈ σ1 ⇔ (a3, a4) ∈ σ2.

Suppose σ1, σ2, σ3 are congruences such that we have a link ρ1 from σ1 to σ2 and a
link ρ2 from σ2 to σ3. Then we can define a link from σ1 to σ3 by ∃y1∃y2ρ1(x1, x2, y1, y2) ∧
ρ2(y1, y2, z1, z2).

A link ρ ⊆ D4 is called reflexive if (a, a, a, a) ∈ ρ for every a ∈ D.
We say that two congruences σ1 and σ2 on a set D are adjacent there exists a reflexive

link from σ1 to σ2.
Example 1. Since we can always put ρ(x1, x2, x3, x4) = σ(x1, x3)∧ σ(x2, x4), any congru-

ence σ is adjacent with itself.
Example 2. Trivial congruence and modulo 2 congruence on Z4 are adjacent because we

have the following subalgebra {(a1, a2, b1, b2) | a1 − a2 = 2b1 − 2b2}.
For a relation ρ by Con(ρ, i) we denote the binary relation σ(y, y′) defined by

∃x1 . . . ∃xi−1∃xi+1 . . . ∃xn ρ(x1, . . . , xi−1, y, xi+1, . . . , xn) ∧ ρ(x1, . . . , xi−1, y
′, xi+1, . . . , xn).

For a constraint C = ρ(x1, . . . , xn), by Con(C, xi) we denote Con(ρ, i). It is easy to see that
for a relation ρ with parallelogram property Con(ρ, i) is always a congruence.

We say that two constraints C1 and C2 are adjacent in a common variable x if Con(C1, x)
and Con(C1, x) are adjacent. An instance is called connected if for every two constraints there
exists a path that connects them. It can be shown that every two constraints with common
variable in a connected instance are adjacent.

By Var(Ω) we denote the set of all variables of the instance Ω. We say that an instance
Ω′ is an expansion of an instance Ω if there exists a mapping S : Var(Ω′) → Var(Ω) such that
for every constraint ρ(x1, . . . , xn) of Ω

′ the constraint ρ(S(x1), . . . , S(xn)) is weaker than some
constraint of Ω.

2 Theorems

Theorem 1. Suppose Θ is a crucial cycle-consistent irreducible CSP instance in a constraint
language Γ. Then every constraint relation has parallelogram property.

Theorem 2. Suppose Θ is crucial cycle-consistent irreducible CSP instance. Then there exists
a crucial expansion of Θ containing a linked connected component that is not subdirect.

I am questioning whether this theorem can be strengthened in the following form.

Conjecture 1. Suppose Θ is crucial cycle-consistent irreducible CSP instance. Then Θ is
connected.
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